Computational Modeling of Interacting VEGF and Soluble VEGF Receptor Concentration Gradients

نویسندگان

  • Yasmin L. Hashambhoy
  • John C. Chappell
  • Shayn M. Peirce
  • Victoria L. Bautch
  • Feilim Mac Gabhann
چکیده

Experimental data indicates that soluble vascular endothelial growth factor (VEGF) receptor 1 (sFlt-1) modulates the guidance cues provided to sprouting blood vessels by VEGF-A. To better delineate the role of sFlt-1 in VEGF signaling, we have developed an experimentally based computational model. This model describes dynamic spatial transport of VEGF, and its binding to receptors Flt-1 and Flk-1, in a mouse embryonic stem cell model of vessel morphogenesis. The model represents the local environment of a single blood vessel. Our simulations predict that blood vessel secretion of sFlt-1 and increased local sFlt-1 sequestration of VEGF results in decreased VEGF-Flk-1 levels on the sprout surface. In addition, the model predicts that sFlt-1 secretion increases the relative gradient of VEGF-Flk-1 along the sprout surface, which could alter endothelial cell perception of directionality cues. We also show that the proximity of neighboring sprouts may alter VEGF gradients, VEGF receptor binding, and the directionality of sprout growth. As sprout distances decrease, the probability that the sprouts will move in divergent directions increases. This model is a useful tool for determining how local sFlt-1 and VEGF gradients contribute to the spatial distribution of VEGF receptor binding, and can be used in conjunction with experimental data to explore how multi-cellular interactions and relationships between local growth factor gradients drive angiogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy

Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironm...

متن کامل

Correlation Between Soluble Vascular Endothelial Growth Factor A, Its Receptor 1 And Response To Chemotherapy In Acute Leukemia In Children

  Background and Objective: Vascular endothelial growth factor (VEGF) and its receptors (VEGF-R1 and R2) are major regulators of angiogenesis. This study was designed to assess serum levels of VEGF and VEGF-R1 and their prognostic significance in newly diagnosed childhood acute leukemia. Materials and Methods: For this purpose, VEGF and VEGF-R1 were determined using enzyme linked immuno-sorba...

متن کامل

VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle.

Extensive experimental studies have identified vascular endothelial growth factor (VEGF) concentrations and concentration gradients as major factors in angiogenesis; however, localized in vivo measurements of these parameters have not been possible. We developed a three-dimensional computational model of skeletal muscle fibers, blood vessels, and interstitial space. Here it is applied to rat ex...

متن کامل

Plasma levels of vascular endothelial growth factor and its soluble receptor in non-alcoholic fatty liver disease

Introduction: Non-alcoholic fatty liver disease (NAFLD) is a clinical pathologic condition, which leads to inflammation events in hepatocytes. The objective of present study was to compare the plasma levels of VEGF and sVEGFR-1 as inflammation factors in overweight and obese children and adolescents with and without NAFLD. Materials and Methods: A total sample of 70 overweight and obese childre...

متن کامل

Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise.

VEGF is a key promoter of angiogenesis and a major target of proangiogenic therapy for peripheral arterial disease (PAD). Greater understanding of VEGF angiogenic signaling and guidance by gradients for new capillaries will aid in developing new proangiogenic therapies and improving existing treatments. However, in vivo measurements of VEGF concentration gradients at the cell scale are currentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011